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A~traet--Tbe shear-induced inertial migration of a rigid sphere has been studied experimentally using 
a homogeneous shear flow apparatus. The experimentally measured migration velocities have been 
compared with those predicted by the asymptotic formulas previously given by Saffman and McLaughlin. 
The analysis of a sphere translating in a shear field in the presence of a single wall has been extended 
to the case of a sphere translating in a fluid undergoing a uniform shear between two parallel walls. 
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I. I N T R O D U C T I O N  

It has been observed experimentally that rigid spherical particles in a laminar shear field tend to 
migrate laterally (i.e. they experience a lift force if they are constrained from moving laterally). This 
phenomenon has been observed even when the Reynolds number based on a characteristic 
dimension of  the particle and a characteristic velocity of  the flow is small but finite. Creeping-flow 
equations are time reversible and do not predict any lateral migration or lift on particles in a shear 
field. Hence, it can be concluded that inertial effects cause the particles to migrate laterally. 

The inertial lift on a sphere translating in a linear unbounded shear flow field was analyzed by 
Saffman (1965). Using matched asymptotic expansions, Saffman derived an expression that gives 
the lift force on the sphere to the lowest order. This expression is valid when all the Reynolds 
numbers (defined in section 2) are small compared to unity and for slow translation of  the sphere. 
McLaughlin (1991) derived an expression for the migration velocity of  a sphere in a shear flow 
for arbitrary ratios of  the Reynolds number based on the translation (relative) velocity and the 
diameter of  the sphere and the square root of  the Reynolds number based on the shear and the 
diameter of  the sphere. He also assumed that both these Reynolds numbers are small in magnitude 
compared to unity. McLaughlin 's  (1991) expression reduces to Saffman's (1965) expression when 
the relative magnitudes of  the two Reynolds numbers approach the appropriate limit (this is 
described in section 2). A related problem is that of  a sphere rotating and translating in a quiescent 
fluid. Rubinow & Keller (1961) analyzed this problem and obtained an expression for the lift force 
on the sphere. A rigid sphere in a linear shear flow will rotate and this rotation can cause an 
additional lift force. Auton (1987) considered the lift force on a sphere in a weak shear flow when 
the change in the incident velocity of  the undisturbed flow field across the sphere is small compared 
to the relative velocity of  the sphere. The lift force was calculated by assuming that the flow is 
inviscid. 

The lift force on a sphere in wall-bounded flows when the wall lies in the inner region of the 
sphere's disturbance flow has been analyzed by many authors. These analyses are applicable if the 
distance between the wall and the sphere is very small compared to the length scales at which the 
inertial effects become important.  Cox & Brenner (1968) considered the general problem of a 
nonneutrally buoyant  sphere sedimenting near a flat wall in a linear shear flow field. They assumed 
that the distance between the particle and the wall is large compared to the radius of  the particle 
and the inertial migration velocity was obtained in terms of integrals involving the Green's  

fTo whom all correspondence should be addressed. 
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functions for the creeping-flow equations. Ho & Leal (1974) considered the lift on a neutrally 
buoyant sphere in a planar flow bounded by two flat walls. These authors assumed that the 
walls lie in the inner region of the sphere's disturbance flow and derived an expression for the lift 
force. This expression is valid when the sphere is not very close to the walls. Cox & Hsu (1977) 
evaluated the Green's functions in Cox & Brenner's (1968) analysis and derived an analytical 
expression for the lift force on a rigid sphere sedimenting near a wall in a quadratically varying 
flow. This analysis can be simplified to give the lift force on a sphere translating in a linear 
shear flow field near a flat wall. Vasseur & Cox (1976) extended this analysis to the case of a 
sphere translating in quadratically varying and linear shear flows bounded by two flat walls. 
Leighton & Acrivos (1985) derived an expression for the lift force on a stationary rigid sphere 
which is in contact with a flat wall in a linear shear flow field. The lift on a rigid sphere in a linear 
shear flow, when the distance between the wall and the sphere is comparable to the radius of 
the sphere, has been analyzed by Cherukat & McLaughlin (1994). Lovalenti considered the lift 
on a sphere in a linear shear flow near a wall when the wall lies in the inner region (see Cherukat 
& McLaughlin 1994). Using far-field approximations for the disturbance flow due to the 
sphere, an expression for the lift force which is valid when the sphere is far from the wall was 
derived. 

Drew (1988) considered the problem of a sphere in a strong shear field (corresponding to 
Saffman's limit) near a flat wall. A fourth-order ordinary differential equation was solved 
numerically to obtain the Fourier transform of  the velocity field and the migration velocity was 
evaluated by numerical quadrature. McLaughlin (1993) analyzed the problem of a sphere 
sedimenting in a shear field near a flat wall when the wall lies in either the inner or the outer region 
and an analytical expression for the Fourier transform of the migration velocity was obtained and 
the migration velocity was computed by evaluating the Fourier integrals numerically. This analysis 
is valid when the distance between the wall and the sphere is large compared to the radius of the 
sphere. 

The experimental studies of  the shear-induced inertial lift reported to date pertain to circular tube 
flows or two-dimensional Poiseuille flows (Oliver 1962; Repetti & Leonard 1964; Jeffrey & Pearson 
1965). In this paper, experiments for spheres translating in linear shear fields will be described and 
the experimental results will be compared with the predictions of various asymptotic theories. We 
were primarily interested in the inertial lift on particles which translate with a nonzero relative 
velocity in a shear field. The experiments were conducted with negatively buoyant spheres. To 
obtain an estimate of the wall effects on our experimental measurements, we have extended 
McLaughlin's (1993) results to the case of a sphere translating in a shear flow between two flat 
parallel walls. The results indicate that the wall effects were small for the measurements that we 
will present. 

This study was motivated by the fact that the inertial lift could affect the motion of aerosol 
particles in a turbulent channel flow. In a wall-bounded turbulent flow of a gas containing aerosol 
particles, when the particles move in the viscous sublayer near the walls, the particles can develop 
Reynolds numbers which are of  ordinary unity (McLaughlin 1989), and the presence of the solid 
boundary and a large velocity gradient can give rise to a lift force that can affect the trajectory 
of the aerosol particles. 

2. S PHERE T R A N S L A T I N G  IN AN U N B O U N D E D  SHEAR FIELD 

Consider a rigid sphere of radius a in an unbounded shear flow of a fluid of density p and 
kinematic viscosity v. The sphere is assumed to be located at the origin of  a Cartesian coordinate 
system (figure 1). The undisturbed velocity field is given by Gxe3, where G is the velocity gradient 
in the x direction and e~, e2 and e 3 are unit vectors in the x, y and z directions. The sphere translates 
with a velocity - V s e  3 and rotates with an angular velocity O. Reynolds numbers based on the 
shear, relative (sedimentation) velocity and angular velocity are defined by 

4a 2G 2a V~ 4a 2f2 
Rea - , Res - and Ren - [I] 
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Figure I. Coordinate system for a sphere sedimenting in a linear shear flow field. 

respectively. The quantity Res will be referred to as the slip Reynolds number. It is assumed that 

Res ,~ 1, Reo ,~ 1 and Ren ,~ 1. [2] 

In the region in which the inertial terms are comparable to the viscous terms (the outer region), 
to leading order, the Navier-Stokes equations can be linearized and expressed as (see McLaughlin 
1991): 

~v 
(Vs + Gx) -~z + GVle3 = - V P  + vV2v - 6~avVse36(r), [3] 

where v is the disturbance velocity, Vl is the x component of the disturbance velocity, P is the 
pressure divided by the density and 6 is the three-dimensional delta function. The Stokes length, 
Ls, is defined as 

Y 

Ls = -~; [4] 

and the Saffman length, LG, is defined as 

The inertial terms are comparable to the viscous terms at distances which are O(min(Lc, Ls)) (see 
Proudman & Pearson 1957; Saffman 1965). Saffman (1965) assumed that 

Lc '~ L~ [61 

or, equivalently, 

R,~I/2 • ~c >> Res, [7] 

and obtained an expression for the migration velocity of the sphere. Saffman's expression for the 
migration velocity Pm is 

/G\JI2 
V~ = O.343aV~ v ). [8] 

(In subsequent discussions, the superscript u will denote an unbounded flow field.) McLaughlin 
(1991) generalized Saffman's analysis by removing restriction [7] and obtained an expression for 
the migration velocity. The only assumption is that the Reynolds numbers defined in [l] are small 

IJMF ~/2--1 
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compared to unity. McLaughlin's expression for the migration velocity in an unbounded linear 
shear flow field is 

V~ = ~ a V~ ju(e ), [9] 

where e is defined by 

Re~ 2 
- [ 1 0 ]  

Res 

and ju is a three-dimensional integral that is a function ofe. When e is large, [9] reduces to Saffman's 
expression for the migration velocity. When e is small, [9] predicts a very small migration velocity 
and for e < 0.2 the integral J~ has very small negative values. The integral J~ can be considered 
to be a nondimensional lift force which has the value 2.255 when e ~c~  (the Saffman limit). 

3. WALL E F F E C T S  

The lateral migration of a sphere sedimenting in a linear shear flow field near a planar rigid wall 
when the distance from the wall is very large compared to the radius of the sphere has been analyzed 
by McLaughlin (1993). An analytical expression for the Fourier transform of  the migration velocity 
was obtained by superposition. In this section we will extend this method to the case where the 
sphere translates in a linear shear flow bounded by two planar walls. The two planar walls are 
located at x = - I t  and x = + l  2 and it is assumed that l~, l 2 ~ a. 

The two-dimensional Fourier transform of the velocity field, F, is defined as 

f" = (F~, F2, F3)T = T25~2 v exp[- i (k2y  + k3z)] dy dz, [11] 

where i is ~ - 1 .  Equation [3] can be transformed into the Fourier space using [1 l]. Using the 
continuity equation, pressure can be eliminated and a fourth-order differential equation can be 
obtained for F~. This differential equation can be expressed in nondimensional form as 

iq3 - ~ + x ,  -- _p2  _p2  F , U _  3iq3 d 6 ( x , )  
rc Re~ 2 d x ,  [12] 

The dimensionless quantities x , ,  q, F* and p are defined by 

x ,  = ~--~G, q = L G k ,  F * -  a2Vs a n d p  = ~+q~. [13] 

The operator on the left-hand side of  [12] can be factorized and [12] can be expressed as 

LIL2F,U= 3iq3 d r ( x , )  [14] 
r~Re~ 2 d x ,  ' 

where 

and 

LI 
F 
L?x ,  + 72J 

f l212  

The quantities V and fl are defined by 

and 

6~ 2 
_ p 2 .  [16] L2 c~x~, 

/Z 
)' = (iq3) ''3, larg(?)l = -- [17] 

6 

[32 =p2 + iq3. [18] 
g 
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The solution of  [14] is 

r*°-exp(px*) f~" f 2p e x p ( - p s ) f ( s )  ds e x p ( - p x , )  ' ,  2p _~ exp(ps)f(s) ds, [ ! 9] 

where f is defined as 

~ 3~q3 A i  

*+~-Y Ai co2 ~=o f ( x ,  ) = ~= R ~  {-0~(~ -~ Z 1) ~s + , [20] 

for x > 0, and 

* + ~  a //2 
f ( x , )  - ~-~ R - ~ a / 2 ~ ~ - ~ T i  ) ~ Ai ys + ~ ~=0' [21] 

for x < 0. The function Ai is the Airy function and co is defined to be exp ( -2x i /3 )  when q3 > 0 
and exp(2ni/3) when q3 < 0. In general, the integrals in [18] have to be evaluated numerically. The 
details o f  these computations can be found in McLaughlin (1993). For values o f  Ix,I that are large 
compared to unity, the Fourier transform of  the disturbance flow is 

0.2241q~/3 
V *u = e x p ( - p  Ix,I) .  [22] 1D ~,1/2 r~ 

t , ,~,  G /., 

The derivation of this expression may also be found in McLaughlin (1993). The effect of the walls 
at x ,  = - 1 "  and x ,  = + l* on the migration velocity can be obtained by superposition of the wall 
disturbance on the disturbance flow in an unbounded fluid at the location of the particle. If F*W 
denotes the Fourier transform of  the disturbance flow due to the walls, then the Fourier transform 
of the total disturbance flow, F*,  is given by 

F* = F *w + F *u. [23] 

The wall disturbance satisfies the homogeneous differential equation 

Ll L2 F ~,w = 0. [24] 

The solution of  L~fW= 0 is given by 

f w = C i A i  y x , +  + C : A i  co2 r / x , +  . [25] 

Using [17], it can be shown that the function Ai(2s +//-'/72) decays rapidly for large positive values 
of s and that the function Ai(co2(ys +//:/22)) decays rapidly for large negative values of s. 

The solution of the linear differential equation 

g f l  "f~ = f f  [261 

can be obtained by the method of variation of parameters and is given by 

- '" exp(ps )[  w(,s') ds F ,  W exp(px , )  exp(-ps) f f (s)ds  e x p ( - p x , )  ". 
2p 2p it 

+ D~ e x p ( - p x , )  + D2 exp(px ,  ). [27] 

The boundary conditions for F *W are 

F~W= - F ~  ~ at x ,  = - l *  and x ,  = + / * ,  [281 

and 

dF~ 'w d r * "  
. . . .  at x ,  = - l *  and x ,  = + / * .  [29] 
d x ,  d x ,  
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Using [28] and [29], the constants Dr, D2, C~ and C2 can be determined. These constants are given 
by 

D~ exp( -p l* )  _F~O(_I ,  ) + .  . [30] 
2 p d x ,  _ ;t 

D. - exp ( -p /* )  F,~(l,  ) + [31] 
" 2 p d-~-~, I,~ I 

and 

where 

and 

C, = 2p exp[p(/* +/*)]  
[Ri exp(--pl*)FB + R2 exp(-pl*)Es]  

[EB FA - E A  F~] 
[32] 

C2 = - 2p exp[p(l* + 1" )] [R, exp( -p l*  )Fffq- R2 exp( - p l *  )EA] 
[EB FA --  EA FB] 

[33] 

R, = r * " ( - l * )  + D, exp(pl*) + D2 exp(-pl*) ,  

R2 = r*U(l * ) + D1 exp( -p l* )  + D2 exp(pl* ), 

EA = exp(-ps)Ai  7s + ~ ds. 

E s = ~ ¢ e x p ( - p s ) A i ( e ) 2 ( T s + ~ ) )  as, 

F A = ex s s + s 
¢ 

[34] 

[351 

[36] 

[37] 

[38] 

FB = exp(ps)Ai ~o 2 7s + ds. [39] 
¢ 

When l*, l* ~ 1, the dominant contributions to the integrals involving Ai(),s + [32/72) come from 
the region in which s < 0  and the dominant contributions to the integrals involving 
Ai(~o2(Ts + fl2/yz)) come from the region in which s > 0. It can then be shown that the constants 
in [27] are 

DI = D2 = 0, [40] 

2p exp[p(l* + 1")] ~F*°(-I'~) - exp[-p( /*  + I*)]F*°(I*)~ 
Ci 

= f 0  (Ai ys + ~ ) d s  ~ ' ~ ( / - ( T / 2 ~ x P ~ + ~ - ~ J  [41] 
q 

and 

2p exp[p(l* + l*)] ~F*~(l *) -- exp[-p( l*  + l* )]F*U!~l* )~ 
( - e x p [ - - p ( l *  +/*)]  + exp[p(/* +/*)]J" [42] 

Ai ~o 2 7s + ds 

Using [22], the Fourier transform of the disturbance flow due to the walls when the walls are very 
far from the sphere can be expressed as 

F ,  w = -0.2241 2,3 
D"'/2' I -- exp[-- 2p(I* + I '  )]} (~P- ) (exp(-  2pI* ) + exp ( -  2pI* ) - 2 exp[-  2p(I* + I* ~ 

[431 
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The denominator in [43] can be expanded using the binomial theorem and F*w can be expressed 
as an infinite series of the form 

F ,W_ -0.2241D~/2/~2/3\ 

+ exp[ -  2p(2/,* + l*)] + exp[-2p(l,* + 2l*)] - 2 exp[-2p(2l* + 2l*)] + . - .  ). [44] 

The change in migration velocity due to the walls can be obtained by evaluating the Fourier 
integral 

~: ;_ ~ F*wexp[i(q2y+q3z)]dq2dq3_~ 

at x = y = z = 0. If V~ is the wall contribution to the migration velocity, then 

2 2 
V w = --0. 855aV s v + (l,)S/3 (1' + 1") 5/3 

1 1 2 \ 
+ (21" + 1") 5/3 4- (l* + 21~') 5/3 (21" + 21") 5/3 ~ - ' "  ) .  [45] 

The first two terms can be obtained by considering the flow due to image particles at x ,  = -21"  
and x ,  = 21", and the subsequent terms can be obtained by considering the flow due to successive 
images. As pointed out by Vasseur & Cox (1977), a boundary-layer argument may be used to 
estimate the effect of the walls when they are very far from the sphere. If 1~, 12 >> min(Ls, LG), the 
flow may be assumed to be inviscid near the walls except in thin boundary layers near the two walls. 
These boundary layers are of thickness O (vl~/Vs)t/2 and O (v12/Vs) t/2 Thus, if 1~ and 12 are very large 
compared to the thickness of these boundary layers, the method of images should give a fairly 
accurate estimate of the effect of the walls on the migration velocity. 

The migration velocity of the sphere in the presence of the walls is given by 

V m = VUm-~- V w. [46] 

The dimensionless lift force, J, for a wail-bounded shear flow can be expressed as 

j = ju + jw, [47] 

where jw is the wall contribution to the dimensionless lift force. The dimensionless lift force given 
by [45] for walls which are equidistant (i.e. l* = l* =/*) ,  but very far from the sphere, has been 
compared with that given by the exact expression [27] in figure 2 for e = oo and a = 1.0. For values 
of e > 1.0, [45] predicts the lift force to within 22% of the value predicted by [27] when the walls 
are about 10 Saffman lengths away from the sphere. For values of 1" and l* that are not large, 
[27] has to be used to calculate the migration velocity or the lift force. Since [27] involves the 
integrals of the Airy functions, to evaluate the Fourier transform, the Airy function integrals have 
to be evaluated numerically. The migration velocity can then be obtained by evaluating the Fourier 
integral numerically. 

In section 4 of this paper, we will describe the measurement of the shear-induced lateral migration 
velocity of negatively buoyant spheres sedimenting in a linear shear field. The linear shear field 
was produced by two vertical flat belts moving in opposite directions. To study the shear- 
induced migration in an unbounded field, the spheres should sediment in a fluid undergoing shear 
between belts which are very far from the sphere. However, it is not possible to construct such an 
apparatus. Equation [27] can be used to estimate the effects of the belts on the lateral migration 
and the experimental conditions can be chosen such that the effects of the bounding walls are 
minimized. 

4. E X P E R I M E N T A L  M E A S U R E M E N T  OF THE MIGRATION VELOCITY 

In this section we will describe the experimental measurement of lateral migration velocities. A 
homogeneous shear flow apparatus (HFA) similar to the one used by Graham & Bird (1984) was 
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Figure 2. Comparison of J "  predicted by [44] with that predicted by [27] for e = oo and e = 1.0. 

used to create a linear shear flow field. The schematic of the HFA is shown in figure 3. Two rubber 
timing belts pass over pulleys with matching pitches that rotate in the same sense. Hence the belts 
move in opposite directions in the viewing section of the HFA. The fluid is contained in the space 
between the two Plexiglas sheets and the aluminum block. Circular arches (two at each end) are 
machined in the aluminum block at the top and bottom of  the HFA. These semicircular sections 
ensure that the fluid is subjected to a constant shear (neglecting the small variations in the shear 
rate in the circular section). The circular arches also reduce the end effects (Graham 1980) by 
facilitating smooth separation and reentry of the flows at the top and bottom. The belt tensions 
can be adjusted by a mechanical arrangement. It is necessary to adjust the belt tensions carefully 
since improperly tensioned belts cause flapping of  the belts and walking of  the belts along the axis 
of  the pulleys. 

To prevent the belts from bowing in the middle of the viewing section, aluminum guide plates 
(GI and G2) are fixed. These guide plates also reduce the flapping of the belts and perform better 
than idler pulleys. Grooves are machined on the Plexiglas sheets to ensure that the belts remain 
straight while in motion. Sprockets are fixed to the shafts attached to the bottom pulleys P3 and 
P4 and these are driven by a chain drive attached to a d.c. motor. The speed of the motor can 
be controlled electronically. At low motor speeds, fluctuations in the belt speeds were noticed. To 
overcome this problem the gear ratio was changed by using different sprockets. Thus, the motor 
could be operated at a fairly high speed but the gear reduction ratio ensured that the belts moved 
at a very low speed. The gap between the belts is 50.8 mm, and the width of  each belt is 101.6 mm. 
For low belt speeds, the speeds were determined by measuring the time required for a mark on 
the belts to traverse a fixed distance and, at higher speeds, the belt speeds were determined by using 
a strobe-light focused on the belt teeth. The belt speed was monitored several times during an 
experiment. 

The characteristics of the flow in the HFA depend on the device Reynolds number. A device 
Reynolds number can be defined as 

Vbb 
ReB-- 2 v '  [48] 

where V b is the belt speed and b is the gap between the belts. To determine the linearity of  the 
flow profile for the experimental conditions, a two-dimensional simulation of the HFA was 
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Figure 3. The HFA (homogeneous shear flow apparatus). 

performed using the spectral element program N E K T O N t .  This program could simulate the flow 
in the exact geometry of the flow path. It was found that the flow remained linear in the test section 
up to a belt Reynolds number of 60. The flow in the HFA is a three-dimensional flow. A purely 
two-dimensional shear field can be produced only by belts which are infinitely wide. Very wide belts 
could not be used since this would have resulted in a very large volume of fluid for the experiments. 
Also, the belts had to be chosen from commercially available grades. To determine the effect of 
the aspect ratio (ratio of the gap between the belts to the belt width) on the flow profile, the 
three-dimensional flow inside the HFA was simulated. Figure 4 shows the iso-velocity contours in 
the z plane. The simulations show that a two-dimensional flow exists in the middle two-thirds of  
the HFA. The Plexiglas walls cause the velocity profile to become nonlinear near the walls. To 
ascertain the linearity of the flow profile experimentally, the velocities of neutrally buoyant 
polystyrene beads (1 mm dia) were measured by recording their trajectories. The velocity profile 
obtained by tracking tracer particles for a device Reynolds number of  20 is shown in figure 5. 

fNEKTON is a registered trade name of Nektonics Inc. and MIT, Cambridge, MA. 
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Figure 5. The velocity profile obtained by tracking tracer particles. The values plotted on the x axis 
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In this study, we were interested in the shear-induced inertial lift on spheres which have a nonzero 
relative velocity. It was easier to perform experiments with negatively buoyant spheres than with 
positively buoyant spheres. Plastic spheres (1 mm dia polystyrene spheres, 1.5 mm dia polyacetate 
spheres and 2 mm dia polyacetate spheres) were used for these experiments. The liquids used in 
these experiments were mixtures of UCON 50-HB-5100 oil and water. UCON oil is a water-soluble 
mixture of  polyalkene glycols and behaves like a Newtonian fluid. The viscosities and the densities 
of  these mixtures were controlled by adjusting their compositions. For these experiments, the 
viscosities of the mixtures used were in the range 10-50 cP. It was not necessary to cool the HFA 
to remove the heat generated by viscous dissipation while using these liquids. The vertical alignment 
of the HFA was checked optically. The HFA was filled with the UCON oil-water mixture and 
the solution was allowed to stand for several hours to permit air bubbles to rise to the top and 
escape through the air vents on the top. The belts were set in motion and, after the flow field had 
attained a steady state, a plastic sphere was released into the fluid through the particle injection 
port at the top of  the HFA. The sphere sedimented in the plane midway between the two Plexiglas 
walls. When the sphere reached the test section, its images at two different instants were recorded. 
The lateral migration velocity was determined from these images. 

The image-recording and analyzing system was similar to the one used by Cherukat & 
McLaughlin (1990) (see figure 6). It consists of  two videocameras (Panasonic WV5000) with 
magnifying lenses. The cameras had 525 scan lines and a horizontal resolution of  650 lines at the 
center. The cameras are focused on the midplane between the Plexiglas plates of  the HFA. The 
field of view of camera B is located below that of  camera A. The vertical distance between the 
cameras was adjusted so that in the time required by the sphere to pass from the field of view of  
camera A to that of  camera B, it migrates a reasonable distance in the lateral direction. The video 
synchronizer combines the video signal from both the cameras and displays it as a composite 
split-screen image. The image of sedimenting spheres were recorded and these images were analyzed 
using an X - Y  indicator (Colorado Video 610E). The X - Y  indicator superimposes vertical and 
horizontal cross hairs on the image. The position of these cross hairs on the video monitor can 
be determined by measuring the analog signal from the X - Y  indicator. The value of the analog 
signal depends on the position of the cross hairs on the screen. As the cross hairs are moved from 
one end on the screen to the other, the signal varies linearly. The analog signal was measured using 
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Figure 6. Image-recording and analyzing system used for measuring the shear-induced lateral migration 
velocities. 
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a 12-bit A/D board interfaced with a PC. The lateral distance migrated by the sphere was 
determined by measuring the analog signals when the cross hair is aligned with one of the edges 
of  the image of  the sphere when it is in the field of view of camera A and when it is in the field 
of  view of camera B. The difference in the value of the signal was used to determine the distance 
migrated by the sphere. 

The experiments were conducted for a range of slip Reynolds numbers, Res = 0.1 to 2.5. The 
experiments for measuring the migration velocities required the measurement of small displace- 
ments (typically between 2-4 ram). The elapsed time was measured by counting the number of video 
frames. The cameras had a frame frequency of 30 frames/s. Thus, the time could be measured to 
an accuracy of 1/30th s. The factor that could have contributed to the largest experimental error 
is the inaccuracy in the measurement of distances. One of the possible causes for this is the small 
misalignment of the HFA. As mentioned before, the alignment of the HFA was checked optically. 
The cameras were vertically aligned by focusing on a plumb-line and the cameras were then used 
to align the HFA. The plumb-line used in these experiments was 0.1 mm dia, which when displayed 
on the screen was slightly larger than size of the X - Y  cross hairs. The X Y cross hairs are the same 
size as the scan lines on the video monitor. Thus, the accuracy of  alignment is determined by the 
thickness of the plumb-line. The accuracy of the measurements depends also on the calibration 
accuracy of  the cameras. The accuracy of calibration is also determined by the thickness of the 
plumb-line used for calibration. 

In these experiments, when the spheres reached the viewing section (i.e. they were in the field 
of view of the cameras), the spheres were more than 6 Saffman lengths from the belts. Equation 
[27] was used to estimate the possible effect of the belts on the observed migration velocities. It 
was not possible to measure the distance between the sphere and the belts very accurately. However, 
it should be noted that the lateral distance traveled by the sphere could be measured very 
accurately. The wall contribution should only be considered as a maximum possible value. The 
maximum value of the wall contribution was < 15% of the lift in an unbounded shear. On 
analyzing the scatter in the experimental data, the maximum wall effect was found to be within 
the margin of experimental error for most of the values of e. The dimensionless lift force J was 
calculated using the measured migration velocities for the slip Reynolds numbers, Res (i.e. the 
Reynolds number based on the relative velocity and the diameter of the sphere), in the range 
0.2-1.0. These values of J have been compared with the values of J predicted by McLaughlin's 
expression [9] in figure 7. The experimental data plotted in figure 7 is also given in table 1. The 
dimensionless lift force when the wall effects are added is also shown in this figure. The experimental 
data indicate that the lift force decreases with e,, and it can be concluded that, within the margin 
of experimental error, [9] can be used to predict the shear-induced migration velocity, and that 
Saffman's expression [8] overpredicts the lift if [7] is not satisfied. The experimental data plotted 
in figure 7 indicate that the discrepancy in the measured migration velocities and that predicted 
by [9] increase for ~ > 1.0. The experiments for ~, > 1 were conducted with 1 mm dia polystyrene 
spheres sedimenting in a moderately viscous liquid. The sedimentation velocities were quite small 
in these experiments. This resulted in small migration velocities. Hence, the effect of any error in 
measuring small displacements (e.g. a small misalignment of the HFA/cameras from the vertical 
which would appear as a virtual displacement in the lateral direction when the images are analyzed) 
would cause a larger percentage deviation in the value of J obtained from the experimental 
measurements. 

Several experiments were conducted in which Re s values were in the range 1.2-2.8. Equation [9] 
predicts a very small migration velocity when e < 0.20. The experimental data is shown in table 2. 
However, in these experiments, the spheres were observed to migrate significantly even when the 
values of e were small. Negative migration velocities (i.e. migration of the spheres in the direction 
opposite to that predicted by Saffman's expression) were not observed in any of these experiments. 
Equation [9] is a leading-order asymptotic expression for the migration velocity and is strictly valid 
when Res ,~ 1. Hence, it may not give the correct value of the migration velocity when the value 
of Res is O(1). Rubinow & Keller's (1961) analysis gives an asymptotic expression for the lift force 
on a sphere rotating and translating in a quiescent fluid when Res ,~ 1. The value of the migration 
velocity obtained using Rubinow & Keller's expression for the experimental conditions, by 
assuming that the sphere rotates with an angular velocity which is equal to one-half the velocity 
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Figure 7. Comparison of  J from experimental data with that predicted by McLaughlin 's  (1991) 
expression, [9], for Re s < 1.0. The values obtained by adding the wall contribution given by [27] are also 

shown. 

Table 1. Experimentally obtained values of  J for Re s < 1 
(these data are also plotted in figure 7) 

J~ 
Re s Re o e experimental J, [9] 

0.7368 0.0626 0.3395 0.3910 0.2249 
0.7542 0.0988 0.4168 0.5494 0.4682 
0.6120 0.0822 0.4685 0.6844 0.6391 
0.7542 0.1495 0.5126 0.9714 0.7794 
0.6662 0.1448 0.5713 0.9682 0.9516 
0.4344 0.0668 0.5949 0.9979 1.0154 
0.6285 0.1775 0.6703 1.1340 1.1973 
0.5608 0.1456 0.6804 1.0736 1.2192 
0.3996 0.1211 0.8708 1.5945 1.5440 
0.4078 0.1340 0.8977 1.5542 1.5785 
0.3156 0.0931 0.9668 1.7597 1.6569 
0.2007 0.0683 1.3021 2.0920 1.9021 
0.1989 0.0945 1.5455 2.4538 1.9908 

Table 2. Migration velocities for Re s > 1 

V m (mm/s), V m (mm/s), Vm (mm/s), 
Re s Re G ~ measured [8] Rubinow & Keller (1961) 

1.2220 0.0939 0.2512 0.01245 0.00119 0.00273 
1.3903 0.2439 0.3552 0.03190 0.01873 0.00936 
1.4603 0.2602 0.3493 0.03006 0.01722 0.01016 
1.5097 0.3599 0.3973 0.05341 0.03472 0.01413 
1.5097 0.4687 0.4535 0.08392 0.05081 0.01840 
1.5291 0.1112 0.2181 0.01325 0.00000 0.00446 
1.9560 0.2265 0.2432 0.02065 0.00186 0.00985 
1.9560 0.3258 0.2918 0.02772 0.00950 0.01472 
1.9730 0.2372 0.2468 0.01300 0.00207 0.00951 
1.9730 0.1594 0.2023 0.00916 - 0.00040 0.00642 
2.7809 0.2907 0.1939 0.01285 -0.00081 0.01321 
2.7809 0.1906 0.1570 0.00952 -0 .00075 0.00866 
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gradient, is also indicated in table 2. The experimentally measured migration velocities are 
higher than that predicted by Rubinow & Keller's (1961) expression but the difference between 
the experimental value and that predicted by Rubinow & Keller's expression decreases as Res 
increases. 

5. C O N C L U S I O N  

The analysis for a sphere translating parallel to a single wall has been extended to the case in 
which the sphere translates in a linear shear flow between two walls. This expression reduces to 
the expression that can be derived by considering the disturbance flow due to successive images 
when the walls are very far (in terms of Saffman length) from the sphere. The experimental results 
indicate that McLaughlin's (1991) expression for the inertial lift may be used to predict the inertial 
lift force when Res < 1.0. At higher Res, significant differences can be noticed. This difference could 
be due to the fact the asymptotic expression based on the Oseen approximation for the outer flow 
field is not valid at higher Res. 
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